| Reg. No. : |  |  |  |  |  |  |
|------------|--|--|--|--|--|--|
| Ÿ          |  |  |  |  |  |  |

# Question Paper Code: 70563

B.E./ B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth/ Eighth Semester

Electrical and Electronics Engineering

#### EE 8591 - DIGITAL SIGNAL PROCESSING

(Common to: Electronics and Instrumentation Engineering/ Instrumentation and Control Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. Define Quantization Error.
- 2. What do you mean by aliasing?
- 3. What are some uses for the Z-transform?
- 4. Give the relation between Z-transform and DTFT.
- 5. State and prove time shifting property of DFT.
- 6. Draw the basic butterfly diagram for DIF FFT algorithm.
- 7. Under what condition an FIR filter will exhibit linear phase response.
- 8. List any two Butterworth low pass filter properties.
- 9. What are the addressing modes of a DSP processor.
- 10. List any two DSP processors.

## PART B - (5 × 13 = 65 marks)

## (Restrict to a maximum of 2 subdivisions)

| 11. | (a) | (i) How are discrete time signals classified? Differentiate between them. (6)                                                                       |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     | (ii) Find the linear, invariance and causality of given system: $y(n) = x(n) - ax(n-1)$ (7)                                                         |
|     |     | Or                                                                                                                                                  |
|     | (b) | Discuss the concept of stability and causality with examples. (13)                                                                                  |
| 12. | (a) | Explain the properties of DTFT. (13)                                                                                                                |
|     |     | Or                                                                                                                                                  |
|     | (b) | Explain in detail the Frequency Response of Stable Systems. (13)                                                                                    |
| 13. | (a) | Define DFT and then state and prove properties of DFT. (13)                                                                                         |
|     |     | Or                                                                                                                                                  |
|     | (b) | Find the DFT of a sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using:                                                                               |
|     |     | (i) DIT algorithm (7)                                                                                                                               |
|     |     | (ii) DIF algorithm (6)                                                                                                                              |
| 14. | (a) | Design a FIR digital low-pass filter with a cutoff frequency of 1 kHz and a sampling rate of 4 kHz with 7 samples using Fourier series method. (13) |
|     |     | $\mathbf{Or}$                                                                                                                                       |
|     | (b) | Design a digital second order Low-Pass Butterworth filter with cut-off frequency 2.2 kHz using Bilinear Transformation. Sampling rate 8 kHz. (13)   |
| 15. | (a) | Draw and explain the architecture of DSP processor and list out the Features. (13)                                                                  |
|     |     | Or                                                                                                                                                  |
|     | (b) | Explain the Functional modes of DSP processors with neat diagram. (13)                                                                              |

#### PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) (i) Consider a second order IIR filter with.  $H(Z) = 1/(1-0.5z^{-1})(1-0.45z^{-1})$  Find the effect on quantization on pole locations of the given system function in direct form and in cascade form. Assume b=3 bits. (10)
  - (ii) Write the steps in the design of FIR filters. (5)

Or

- (b) (i) For the analog transfer function  $H(s) = 2/\{(s+2)(s+3)\}$ . Determine H(z) using impulse invariance method. Assume T=1 sec. (10)
  - (ii) Justify the statement IIR filter is less stable and give reason for it.